−260°11. This may be described as a plain negative dispersion curve. The absolute configuration of (+)-dihydro coumarilic acid has been rigorously established by oxidative degradation to (+)-D malic acid. (+)-5-Methoxy dihydro coumarilic acid. VIII has a plain positive ORD curve in this area, ($[\mathcal{O}]_{350}+350^\circ$; $[\mathcal{O}]_{325}+600^\circ$; $[\mathcal{O}]_{311}+1200^\circ$) and its (−)-enantiomer has a plain negative curve. (+)-5-Methoxy dihydro coumarilic acid. (VIII) may therefore be presumed to have the same absolute configuration as (+)-dihydro coumarilic acid, i.e., the R-configuration. Nevertheless, a chirooptical comparison, where the chromophores are different, does not provide a rigorous proof of configuration, although this is often done. It is preferable to either convert one chromophore to the other. or effect a chemical correlation.

The methoxy alcohol IX could be readily demethylated, but attempts to reductively remove the phenolic hydroxyl group by the usual methods were not successful. Instead, (+)-5-methoxy dihydro coumarilic acid (VIII) was ozonized in acetic acid (scheme 3) by essentially the same procedure as that described by Bonner® for (+)-dihydro coumarilic acid. No change in $[\alpha]_D$ was observed after the acid VIII had stood overnight at room temperature in acetic acid. Therefore, no racemization was anticipated as a consequence of the reaction conditions. (+)-5-Methoxy dihydro coumarilic acid (VIII) (500 mg) was dissolved in acetic acid (10 ml) and treated with ozonized air at room temperature for 24 h. The acetic

acid solution was then treated with 30% H₂O₂, 10% Pd/C and concentrated to dryness. Oxalic acid was removed via its calcium salt as described by Bonner⁹. The residue was chromatographed on Dowex 50 resin (H+ form). Elution with 50% aqueous acetic acid yielded the major fraction. This material was dissolved in methanol and treated with excess etheral diazomethane. The resulting yellow oil was chromatographed on alumina (neutral III). Elution by ether-methanol (1:1) gave a main fraction identified by tlc as slightly impure methyl D-(+)-malate (36% of theory). This oil was distilled in a hot box in vacuo. The distillate which had $[\alpha]_D + 10.1^{\circ}$ (c = 1.00 acetone) (reported 9 [α] $_{\rm D}^{20}$ + 11.4 $^{\circ}$ (c = 1.10 acetone)), was shown to be methyl D-(+)-malate by comparison [tlc (silica gel/ethyl acetate); NMR, IR] with an authentic sample prepared from the commercially available acid (Aldrich Chemical Co.). Thus, the absolute configuration of (+)-5-methoxy dihydro coumarilic acid (VIII) is rigorously established as the R-configuration, and in turn the absolute configuration of SU 23397 (I) as the Rconfiguration 14.

- 11 B. Sjöberg, Ark. Kemi 15, 451 (1960).
- 12 G. Schmidt and H. Rosenkranz, Justus Liebigs Ann. Chem. 1976, 124.
- 13 N. Finch, R. Dziemian, J. Cohen and B. G. Steinetz, Experientia 31, 1002 (1975).
- 14 R. S. Cahn, C. K. Ingold and V. Prelog, Angew. Chem. Int. Ed. 5, 385 (1966).

A novel cannabinoid containing a 1,8-cineol moiety1

D. B. Uliss, G. R. Handrick, H. C. Dalzell and R. K. Razdan

Sheehan Institute for Research Inc., 767B Concord Avenue, Cambridge, (Massachusetts 02138, USA), 3 November 1976

Summary. The synthesis of a novel cannabinoid containing a 1,8-cineol moiety (1) is described. It is much less biologically active than Δ^1 -tetrahydrocannabinol.

We wish to report the synthesis of a novel cannabinoid 1 containing a 1,8-cineol residue. The formation of 1 was observed during our studies on cannabielsoin 2a, which is a decarboxylation product of the naturally occurring constituent of hashish, cannabielsoic acid 2b. In an earlier publication 2 we confirmed the gross structure of cannabielsoin 3 and revised the reported 4 configuration at C_1 to that shown in 2a on the basis of a stereochemically

unambiguous synthesis² of **2a** from **3**. Independently, Shani and Mechoulam⁵ arrived at similar conclusions while working on the cannabielsoic acid series.

We have found that when cannabielsoin is refluxed in benzene in the presence of a catalytic amount of ptoluenesulphonic acid it undergoes an intramolecular cyclization in essentially quantitative yield. On the basis of NMR and mass spectral evidence, we can securely assign structure 1 to this novel cannabinoid: $[\alpha]_D^{25} - 21.2^{\circ}\text{C}$ (c 1.55, ethanol); NMR (CCl₄) 6.07, 6.00 (2, aromatics), 5.30 (br, 1, OH), 4.50 (d, 1, J = 10 Hz, C₂-H), 3.97 (dd, 1, J_{2,3} = 10 Hz, J_{3,4} = 3 Hz, C₃-H), 2.02 (m, 1, C₄-H), 1.13 (s, 3, C₁-CH₃), 0.88 (t, 3, ω -CH₃). The positions of the C₁ and C₃ methyl groups agree with those reported for 1,8-cineol⁶; the magnitude of the coupling constant for protons at C₂ and C₃ is in accord with that

- Acknowledgment. This work was supported by NIDA (grant No. DA-00574-01).
- 2 D. B. Uliss, R. K. Razdan and H. C. Dalzell, J. Am. Chem. Soc. 96, 7372 (1974).
- 3 A. Shani and R. Mechoulam, Chem. Commun., 273 (1970).
- F. J. E. M. Küppers, R. J. J. Ch. Lousberg, C. A. L. Salemink, J. K. Terlouw, W. Heerma and A. Laven, Tetrahedron 29, 2797 (1973).
- A. Shani and R. Mechoulam, Tetrahedron 30, 2437 (1974).
- 6 Varian NMR Spectra Catalog, Spectrum No. 280.

expected^{4,5} for a cis-fused ring junction; and the observed coupling constant for protons at C_3 and C_4 corresponds⁷ to the measured value from the Dreiding model (approx. 50°). The mass spectrum (70 eV) shows a molecular ion (M+) at m/e 330 and major fragment ions at 205 (base peak, 4), 204, 148 and 147 consistent with the assigned structure.

Transannular ring formation to give compound 1 requires a cis-orientation of the hydroxyl- and isopropenyl-substituents in 2a and serves as confirmatory evidence for the stereochemical assignment of the C_1 -hydroxyl group as α (axial). Compound 1, tested in mice for overt symptomatology, produced mild catatonia at 10 mg/kg (i.v.). In the same test Δ^1 -tetrahydrocannabinol is active at 0.5 mg/kg⁸.

7 M. J. Karplus, Chem. Phys. 30, 11 (1959).

8 D. B. Uliss, H. C. Dalzell, G. R. Handrick, J. F. Howes and R. K. Razdan, J. med. Chem. 18, 213 (1975). We thank Dr J. F. Howes for carrying out this test.

Correlation of anthothecol and hirtin

B. A. Burke, W. R. Chan, J. R. Rawle and D. R. Taylor

Chemistry Department, University of the West Indies, Kingston 7 (Jamaica), 17 November 1976

Summary. Hirtin (3) and anthothecol (2) have been correlated by conversion of each to the derivative (10).

A large number of furancid tetranortriterpenes (limonoids) have been isolated from members of the Meliaceae and Rutaceae¹. These show a great variety and complexity of structure but are related biogenetically and can be further classified on the basis of skeletal modifications into subgroups. The simplest of these are tetracarbocyclic and 4 of this group, cedrelone (1)^{2,3}, anthothecol (2)⁴⁻⁷, hirtin (3) and desacetylhirtin (4)^{7,8}, are further characterized by the presence of a diosphenol in ring B. The structure of cedrelone (1) has been defined by X-ray analysis and recently the complete stereochemistry of hirtin (3) and desacetylhirtin (4) has been assigned from chemical⁹ and X-ray¹⁰ data. We now report a correlation of hirtin (3) with anthothecol (2).

Treatment of the diol (5) in dimethylformamide with lithium iodide under conditions of halolysis ^{11, 12} led to a mixture (44%; 1:1) of 6 $\rm C_{27}H_{34}O_7$ (M+ 470), m.p. 197 to 199 °C, and 7 $\rm C_{26}H_{32}O_7$ (M+ 456), m.p. 213.5 °C. The spectral characteristics of 6 $\rm UV[\lambda_{max}$ (EtOH) 210, 264 nm, ε_{max} 7160, 8710]; $\rm IR[\nu$ 3413, 1709, 1675, 1590, 1495 and 877 cm⁻¹]; $\rm NMR(CDCl_3)$ [δ 0.72, 1.33 (2), 1.43, 1.48 (singlets, C-methyls), 4.07 (2H, broad singlet, H-11, H-12), 3.93 (1H, singlet, H-15), 3.69 (3H, singlet, O-methyl) and 6.30, 7.39, and 7.43 (each 1H, narrow multiplets, furan protons)] are in agreement with the structure. The spectra of 7 differed significantly only in the absence of the methoxy signal in the NMR and the characteristic reversible base shift for the diosphenol in the UV. The

1 R = H2 R = OAc

 $R_1 = CO_2Me$; $R_2 = Me$; $R_3 = H$ $R_1 = R_2 = Me$; $R_3 = H$ $R_1 = Me$; $R_2 = R_3 = H$ $R_1 = Me$; $R_2 = R_3 = Ac$

3 $R_1 = Ac$; $R_2 = COEt$ 4 $R_1 = H$; $R_2 = COEt$